Rockdu's Blog
“Where there is will, there is a way”
亲 您的浏览器不支持html5的audio标签
Toggle navigation
Rockdu's Blog
主页
数据结构
字符串算法
图论
数论、数学
动态规划
基础算法
[其它内容]
计算几何
科研笔记
归档
标签
HDU5608 function
? 解题记录 ?
? 莫比乌斯函数 ?
? 亚线性筛 ?
2018-12-09 17:39:22
194
0
0
rockdu
? 解题记录 ?
? 莫比乌斯函数 ?
? 亚线性筛 ?
Problem Description There is a function f(x),which is defined on the natural numbers set N,satisfies the following eqaution N2−3N+2=∑d|Nf(d) calulate ∑Ni=1f(i) mod 109+7. Input the first line contains a positive integer T,means the number of the test cases. next T lines there is a number N T≤500,N≤109 only 5 test cases has N>106. Output Tlines,each line contains a number,means the answer to the i-th test case. Sample Input 1 3 Sample Output 2 $1^2-3*1+2=f(1)=0$ $2^2-3*2+2=f(2)+f(1)=0->f(2)=0$ $3^2-3*3+2=f(3)+f(1)=2->f(3)=2$ $f(1)+f(2)+f(3)=2$ Source BestCoder Round #68 (div.2) Recommend hujie 简单地套个莫比乌斯反演就行了,最后前缀和用个杜教筛。比较模板,就不详细写了。 <space> ``` #include<cstdio> #include<cmath> #include<cstring> #include<tr1/unordered_map> #define LL long long using namespace std; using namespace tr1; const int maxn = 5e6 + 5, mod = 1e9 + 7; int pri[maxn], miu[maxn], M[maxn], t; unordered_map<LL, LL> hsh; LL a, b, N, n, ans; bool vis[maxn]; LL fpow(LL a, LL b, LL c) { LL ans = 1; while(b) { if(b & 1) ans = (ans * a) % c; b >>= 1, a = a * a % c; } return ans; } int inv2 = fpow(2, mod - 2, mod), inv6 = fpow(6, mod - 2, mod); LL Get_2(LL x) {return (((x * (x + 1)) % mod * (2 * x % mod + 1)) % mod * inv6) % mod;} LL Get(LL x) {return (x * (x + 1) % mod) * inv2 % mod;} void prime(int N) { M[1] = miu[1] = 1; for(register int i = 2; i <= N; ++i) { if(!vis[i]) pri[++pri[0]] = i, miu[i] = -1; for(register int j = 1; j <= pri[0] && i * pri[j] <= N; ++j) { vis[i * pri[j]] = 1; miu[i * pri[j]] = miu[i] * miu[pri[j]]; if(i % pri[j] == 0) { miu[i * pri[j]] = 0; break; } } M[i] = M[i - 1] + miu[i]; } } LL GetMiu(LL x) { if(x <= N) return M[x]; if(hsh[x]) return hsh[x]; LL ret = 1, l = 2, r = 1, a; while(r < x) { l = r + 1, r = x / (x / l); a = GetMiu(x / l), ret -= (r - l + 1) * a; hsh[x / l] = a; } return ret; } int main() { scanf("%d", &t); N = 5000000; prime((int)(N)); while(t--) { scanf("%lld", &n); ans = 0; for(register LL l = 1, r = 1; l <= n; l = r + 1) { r = n / (n / l); ans = (ans + (GetMiu(r) - GetMiu(l - 1)) * (Get_2(n / l) - 3 * Get(n / l) + 2 * (n / l)) + mod) % mod; } printf("%lld\n", (ans + mod) % mod); } return 0; } ```
上一篇:
POJ3693 Maximum repetition substring
下一篇:
LOJ#6109. 「2017 山东二轮集训 Day4」增添
0
赞
194 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册