Rockdu's Blog
“Where there is will, there is a way”
亲 您的浏览器不支持html5的audio标签
Toggle navigation
Rockdu's Blog
主页
数据结构
字符串算法
图论
数论、数学
动态规划
基础算法
[其它内容]
计算几何
科研笔记
归档
标签
HDU5599 GTW likes tree
? 解题记录 ?
? HDU ?
? 容斥 ?
? 莫比乌斯函数 ?
2019-03-15 15:47:54
560
0
0
rockdu
? 解题记录 ?
? HDU ?
? 容斥 ?
? 莫比乌斯函数 ?
### GTW likes tree Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 191 Accepted Submission(s): 38 ### Problem Description GTW has a tree of n nodes, in which m nodes are special nodes. The value of node i is vi. Dis(x,y) is defined as the greatest common divisor of the nodes in the chain between node x and node y. Jabby(x,y) is defined as the number of special nodes in the chain between node x and node y. You are asked to calculate the value of ans, which is defined as follow. ans=∏i∏j=imax(1,Dis(i,j)∗min(1,jabby(i,j))) Because ans could be very large, you only need to print ans modulo 109+7. ### Input The first line of the input file contains an integer T, indicating the number of test cases. (T≤6) For each test case, there are n+m+2 lines in the input file. The first line of each test case contains a number n which indicates the number of the nodes of GTW’s tree. (1≤n≤200000) In each line of the following n−1 lines, there are two numbers x and y which indicate that there is an undirected line between node x and node y. The next line contains n integers, v1,v2,...,vn, in which vi indicates the value of node i. (1≤vi≤100000) The next line contains a number m which indicates the number of special nodes. Then in each line of the following m lines, there are an integer g which indicates that node g is a special node. The data guarantees that the m given nodes differ from each other. ### Output In the output file, there should be exactly T lines, each of which contains exactly one integer ans, which is defined above. ### Sample Input ``` 1 2 1 2 2 2 2 1 2 ``` 题意:给你一棵树,给你一些关键点,让你求出关键点之间两两路径$gcd$的乘积。 这里介绍一种会被卡常但是非常具有推广性的做法。 我们可以求出$gcd=x$的路径条数,这样算什么都很方便了。 然后有一个显然的性质,考虑令每一条边$(u,v)$的权值等于$gcd(a[u],a[v])$。这样每一条路径的$gcd$和原来等价。这样我们只需要考虑边就可以了。 首先考虑所有点都是关键点。 直接求$gcd=x$不好求。考虑对于每一个$x$,求出$x|gcd$的路径条数,这样从大到小减去倍数的贡献就可以变回去。 对于每一个$x$,我们的做法是直接枚举$x$的每一个倍数,找出权值为$x$的倍数的所有边,加入图中,对每一个联通块大小求出$size\times (size-1)$求和,这个可以并查集做。 分析复杂度:一条边权值所有的因数都可以作为$x$而被这条边加入一条边。一个数最多$\sqrt V$个因数。 总的复杂度$O(n\sqrt V\alpha(n))$ 不过上面被卡了,乖乖枚举$p^k$算乘积吧。 ``` #prag\ ma GCC optimize("O2") #pragma comment(linker, "/STACK:102400000,102400000") #include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #include<cmath> #include<vector> #include<cctype> #define LL long long using namespace std; const int maxn = 4e5 + 5; const int mod = 1e9 + 7; struct edge { int u, v, d; } e[maxn << 1]; int head[maxn], cnt, u, v, n, a[maxn], b[maxn]; vector<int > pos[maxn]; void read(int &x) { x = 0; static char c = getchar(); while(!isdigit(c)) c = getchar(); while(isdigit(c)) x = x * 10 + c - '0', c = getchar(); } int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } void Add(int &x, const int &a) { x += a; if(x >= mod) x -= mod; } void Dec(int &x, const int &a) { x -= a; if(x < 0) x += mod; } int mul(const int &a, const int &b) { return 1ll * a * b % mod; } int fpow(int a, int b) { int ans = 1; while(b) { if(b & 1) ans = 1ll * ans * a % mod; a = 1ll * a * a % mod, b >>= 1; } return ans; } namespace DSU { int fa[maxn], stk[maxn], top; LL siz[maxn]; int stk2[maxn]; LL ans; void init(int n) { for(register int i = 1; i <= n; ++i) fa[i] = i, siz[i] = 1; } int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } void combine(int x, int y) { x = find(x), y = find(y); stk[++top] = x; stk2[top] = y; ans -= (siz[y]) * (siz[y] - 1); ans -= (siz[x]) * (siz[x] - 1); fa[x] = y, siz[y] += siz[x]; ans += (siz[y]) * (siz[y] - 1); } void clear() { int tmp; ans = 0; while(top) siz[stk2[top]] = 1, fa[tmp = stk[top--]] = tmp; } } LL ans[maxn]; int solve1() { int tmp; memset(ans, 0, sizeof(ans)); ans[1] = 1ll * n * (n - 1); for(register int i = 2; i <= 100000; ++i) { for(register int j = i; j <= 100000; j += i) { for(register int k = pos[j].size() - 1; k >= 0; --k) { tmp = pos[j][k]; DSU::combine(e[tmp].u, e[tmp].v); } } ans[i] = DSU::ans; DSU::clear(); } for(register int i = 100000; i >= 1; --i) { for(register int j = i + i; j <= 100000; j += i) ans[i] -= ans[j]; } int ret = 1, inv2 = fpow(2, mod - 2); for(register int i = 1; i <= 100000; ++i) ans[i] = (ans[i] / 2) % (mod - 1), ret = mul(ret, fpow(i, ans[i])); for(register int i = 1; i <= n; ++i) ret = mul(ret, a[i]); return ret; } int solve2() { int tmp; memset(ans, 0, sizeof(ans)); for(register int i = 1; i <= 100000; ++i) { { for(register int j = i; j <= 100000; j += i) { for(register int k = pos[j].size() - 1; k >= 0; --k) { tmp = pos[j][k]; if(b[e[tmp].u] || b[e[tmp].v]) continue; DSU::combine(e[tmp].u, e[tmp].v); } } ans[i] = DSU::ans; DSU::clear(); } } for(register int i = 100000; i >= 1; --i) { for(register int j = i + i; j <= 100000; j += i) ans[i] -= ans[j]; } int ret = 1, inv2 = fpow(2, mod - 2); for(register int i = 2; i <= 100000; ++i) ret = mul(ret, fpow(i, (ans[i] / 2) % (mod - 1))); for(register int i = 1; i <= n; ++i) if(!b[i]) ret = mul(ret, a[i]); return ret; } int main() { //freopen("tree.1.2.in", "r", stdin); //freopen("tree.out", "w", stdout); int t; read(t); while(t--) { read(n), cnt = 0; for(register int i = 1; i <= 100000; ++i) pos[i].clear(); for(register int i = 1; i < n; ++i) read(u), read(v), e[++cnt] = (edge) {u, v}; for(register int i = 1; i <= n; ++i) read(a[i]); for(register int i = 1; i <= n; ++i) read(b[i]); for(register int i = 1; i <= cnt; ++i) e[i].d = gcd(a[e[i].u], a[e[i].v]), pos[e[i].d].push_back(i); DSU::init(n); cout << mul(solve1(), fpow(solve2(), mod - 2)) << endl; } return 0; } ```
上一篇:
LOJ#565. 「LibreOJ Round #10」mathematican 的二进制
下一篇:
LOJ#517. 「LibreOJ β Round #2」计算几何瞎暴力
0
赞
560 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册