CF#470 Div2 D. Perfect Security
? 解题记录 ? ? 字典树 ? ? Codeforces ?    2018-03-12 15:47:10    748    0    0
 

Alice has a very important message M consisting of some non-negative integers that she wants to keep secret from Eve. Alice knows that the only theoretically secure cipher is one-time pad. Alice generates a random key K of the length equal to the message's length. Alice computes the bitwise xor of each element of the message and the key (, where  denotes the bitwise XOR operation) and stores this encrypted message A. Alice is smart. Be like Alice.

For example, Alice may have wanted to store a message M = (0, 15, 9, 18). She generated a key K = (16, 7, 6, 3). The encrypted message is thus A = (16, 8, 15, 17).

Alice realised that she cannot store the key with the encrypted message. Alice sent her key K to Bob and deleted her own copy. Alice is smart. Really, be like Alice.

Bob realised that the encrypted message is only secure as long as the key is secret. Bob thus randomly permuted the key before storing it. Bob thinks that this way, even if Eve gets both the encrypted message and the key, she will not be able to read the message. Bob is not smart. Don't be like Bob.

In the above example, Bob may have, for instance, selected a permutation (3, 4, 1, 2) and stored the permuted key P = (6, 3, 16, 7).

One year has passed and Alice wants to decrypt her message. Only now Bob has realised that this is impossible. As he has permuted the key randomly, the message is lost forever. Did we mention that Bob isn't smart?

Bob wants to salvage at least some information from the message. Since he is not so smart, he asks for your help. You know the encrypted message A and the permuted key P. What is the lexicographically smallest message that could have resulted in the given encrypted text?

More precisely, for given A and P, find the lexicographically smallest message O, for which there exists a permutation π such that  for every i.

Note that the sequence S is lexicographically smaller than the sequence T, if there is an index i such that Si < Ti and for all j < i the condition Sj = Tj holds.

Input

The first line contains a single integer N (1 ≤ N ≤ 300000), the length of the message.

The second line contains N integers A1, A2, ..., AN (0 ≤ Ai < 2^30) representing the encrypted message.

The third line contains N integers P1, P2, ..., PN (0 ≤ Pi < 2^30) representing the permuted encryption key.

Output

Output a single line with N integers, the lexicographically smallest possible message O. Note that all its elements should be non-negative.

Examples

input

3
8 4 13
17 2 7

output

10 3 28

input

5
12 7 87 22 11
18 39 9 12 16

output

0 14 69 6 44

input

10
331415699 278745619 998190004 423175621 42983144 166555524 843586353 802130100 337889448 685310951
226011312 266003835 342809544 504667531 529814910 684873393 817026985 844010788 993949858 1031395667

output

128965467 243912600 4281110 112029883 223689619 76924724 429589 119397893 613490433 362863284

Note

In the first case, the solution is (10, 3, 28), since  and . Other possible permutations of key yield messages (25, 6, 10)(25, 3, 15)(10, 21, 10)(15, 21, 15) and (15, 6, 28), which are all lexicographically larger than the solution.

题意:给定相同长度的数字序列A和数字集合B(数值范围均在2^30)以内,序列A的顺序已给定。现在用B集合的数字排成序列,使得该序列与A序列每一个位置的数异或起来得到的新序列字典序最小。

由于要求最小异或和,想到用Trie树。我们把B集合中的数二进制从高位到低位插入Trie树中。依次对A中的数操作:把这个数从高位到低位按位分解,从Trie树根出发,每一次贪心沿着与该位相同的边走,如果没有这样的边才向另一边走(只有0,1两种边)。每一次选择走过路径所表示的数,就可以做到该位异或值最小了。

#include<cstdio>
using namespace std;
const int maxn = 3e5 + 5, max2 = 1 << 30;
int trie[maxn * 20][2], cnt = 1, n, a[maxn], b, sum[maxn * 20];

void insert(int x) {
	int now = 1;
	for(register int i = max2; i; i >>= 1) {
		++sum[now];
		if(x & i) now = trie[now][1] ? trie[now][1] : trie[now][1] = ++cnt;
		else now = trie[now][0] ? trie[now][0] : trie[now][0] = ++cnt;
	}
	++sum[now];
}

int Match(int x) {
	int now = 1, c, ans = 0;
	for(register int i = max2; i; i >>= 1) {
		c = ((x & i) != 0), --sum[now];
		if(sum[trie[now][c]]) now = trie[now][c], ans += i * c;
		else now = trie[now][c ^ 1], ans += i * (c ^ 1);
	}
	return --sum[now], ans;
}

int main() {
	scanf("%d", &n);
	for(register int i = 1; i <= n; ++i) scanf("%d", &a[i]);
	for(register int i = 1; i <= n; ++i) scanf("%d", &b), insert(b);
	for(register int i = 1; i <= n; ++i) {
		printf("%d ", a[i] ^ Match(a[i]));
	}
	return 0;
}

 

上一篇: CF#470 Div2 B. Primal Sport

下一篇: 洛谷P3338 [ZJOI2014]力

748 人读过
立即登录, 发表评论.
没有帐号? 立即注册
0 条评论
文档导航