Rockdu's Blog
“Where there is will, there is a way”
亲 您的浏览器不支持html5的audio标签
Toggle navigation
Rockdu's Blog
主页
数据结构
字符串算法
图论
数论、数学
动态规划
基础算法
[其它内容]
计算几何
科研笔记
归档
标签
POJ1737 Connected Graph
? 解题记录 ?
? POJ ?
? 动态规划 ?
? 组合数 ?
2018-06-16 10:31:44
385
0
0
rockdu
? 解题记录 ?
? POJ ?
? 动态规划 ?
? 组合数 ?
###<font color=blue>Description </font> An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v) of vertices,u is reachable from v. You are to write a program that tries to calculate the number of different connected undirected graph with n vertices. For example,there are 4 different connected undirected graphs with 3 vertices. ###<font color=blue>Input </font> The input contains several test cases. Each test case contains an integer n, denoting the number of vertices. You may assume that 1<=n<=50. The last test case is followed by one zero. ###<font color=blue>Output </font> For each test case output the answer on a single line. ###<font color=blue>Sample Input </font> 1 2 3 4 0 ###<font color=blue>Sample Output </font> 1 1 4 38 题意:统计n个点的带标号无向连通图个数。 从正面不好考虑我们可以从反面考虑。因为n个点的无向图有多少种是很好求的,我们可不可以用总的减去不连通的呢? 考虑计算不连通的图的种类。为了不算重,我们假设先固定一个点,那么这个点一定在这个图的一个无向连通子图(连通块)内。那我们就可以枚举这个点所在的连通子图的大小了。便有了状态转移方程: $$dp[i] = 2^{\binom i 2} - \sum^{i - 1}_{j = 1}dp[j]*{\binom {i-1} {j-1}}*2^{\binom {i-j} 2}$$ 简述其含义即用总的无向图种数减去不连通图个数。不连通图个数可以固定一个点枚举其所在连通块大小,这其中我们可以从剩下$i-1$个点种选出$j-1$个放入这个连通块。再考虑剩下的$i-j$个点,因为只要选出来成为当前枚举的连通块内的点不一样了,那么这两张带标号图一定不同。并且$i-j$个点组成的图和当前连通块一定没有连边。那么分开考虑,剩下的$i-j$个点组成任何种类的图都是合法的。 不知道为什么本机通过上交就re了,打表大法好。 AC代码: ``` #include<cstdio> using namespace std; char ans[][2005] = { "1", "1", "4", "38", "728", "26704", "1866256", "251548592", "66296291072", "34496488594816", "35641657548953344", "73354596206766622208", "301272202649664088951808", "2471648811030443735290891264", "40527680937730480234609755344896", "1328578958335783201008338986845427712", "87089689052447182841791388989051400978432", "11416413520434522308788674285713247919244640256", "2992938411601818037370034280152893935458466172698624", "1569215570739406346256547210377768575765884983264804405248", "1645471602537064877722485517800176164374001516327306287561310208", "3450836972295011606260171491426093685143754611532806996347023345844224", "14473931784581530777452916362195345689326195578125463551466449404195748970496", "121416458387840348322477378286414146687038407628418077332783529218671227143860518912", "2037032940914341967692256158580080063148397956869956844427355893688994716051486372603625472", "68351532186533737864736355381396298734910952426503780423683990730318777915378756861378792989392896", "4586995386487343986845036190980325929492297212632066142611360844233962960637520118252235915249481987129344", "615656218382741242234508631976838051282411931197630362747033724174222395343543109861028695816566950855890811486208", "165263974343528091996230919398813154847833461047104477666952257939564080953537482898938408257044203946031706125367800496128", "88725425253946309579607515290733826999038832348034303708272765654674479763074364231597119435621862686597717341418971119460584259584", "95268202520385449790227094691687836722278710954949736428196756305746453532341035148366531266372862653739009088659598082113309304400438624256", "204586909944926298207861553173799965921067126517774603507480126827588404754232387878919170016875623577048105576068684204467114231315623298308706926592", "878694093745349914731889727208157807680003171098920968952145189548012830636076748530741378813207711246134152874638123892704663922045456803250047261786444398592", "7547924819767483287594694542205326068855891655862820018679189530528628155893698967796630219069788201405972928386025644172169109953194652176102437455457970998547197198336", "129672361263353660216004848405397154497075914498088480263529787446798464815868889966259599220355751574955667311875199310825316757090836792227021420332597263591744872066219249762304", "4455508410978470003213152055317479855991723332650114280703483486331017198541367912550307040027205813596014620050254013798901452927850711294962075802234712748298505435020109941966616435621888", "306180206751230090930313674296749763317292930219833760674864513181351793147422958983304199997791891477494238067606067864147691875149221011750587805454462256284237767964756224079011437145490032917741568", "42081087200752140195116730773102052524009718837902621183664949269856744858385083976643391056195246283737633254986683196506525739229100562028667655727478159896469450443625002559600024194689577683162985133342982144", "11567161173227696466220457283329529101751379197153495724502457893891478829937149071434453800538222228465001645119757350054456753856800058471020811256328606811309950183460999195585736337722940242137574318489684508433109221376", "6359114105601017351375465630036218352726964545083913061809864302427743340641476112983635151514041188995967358659226381513838435962182371853731281705837980150384424607870600516842502175922529566100381861494213531965265765000213275082752", "6991919901710702396948942815573257427744311018004588489866790612959056357721564695830748688904669995738081555372234543689358610668809196548322563461899302515136978058611651369187392760821440875968116963440793130046454847480988052748303630065467392", "15375394465098365435098131065240195173750887603455691084898736566282027607324662718653380384318359771738669872579070523864682029424324656980343742654131923883848453279046887366030428581980234722002609397042921130626427482776226373410811403774539364168814821376", "67621699984704009571087635348261788647460730411971168452281282746962798999895717916292043207408657855232972628889146834646084600650980317820241001687549180689983916950502853108787655643356237905731863505593837387547463783553663104052737827256888296815897621036524900450304", "594806763388137870319868932592503661181879874998563369872608575294390559331829154567126246824792929668641338543467328561106071308881273503814138669414317911219402066314092130747535752627679688399993515689603622744525243838714230998285264232171322066511990049433899384262102238508351488", "10463951242026625501784363274596214619943325701401522513836100192928357652762255136769619473700702276949844553770347735730521468871772581157963359677917896206658361141741863952608795675733168160935829452838892433190712974942475048711118429563334205007874224852816312589287727030417085994911901155328", "368167554019320956145827247050509963076959450983143444578072117098399777382502455552633802915095691807005512740224345254318634273382517137823997743877511866703540358482988273801636313118482363728678083259725882776454656507629131210255280738244476783496709369751571318821222548711309212127848471930415455355797504", "25907488423318455274080473672019976083009208996271003791416218114322853582878049179546761491016196610119349803222490393175612695149120594742502991139032865749979736985340247224801444473477196529096332604358326020598992443433363048888842556850935198901353471923472154386768107635993449205071378228596636214817388982756553261056", "3646154850293767810262810894999553363628589110640769385457986485984919161321600546344826908488589572223649058216506920510786720770519258252897810249930214560211056122090333850686659187132094273815095247787669459869137017783625755540375408272361426098383313551230976557640520636974573279383371834513917048967432546435999569365350430111956992", "1026301351570055077911628972867042177680735585635225345203536190737910863123857244548313982876228994987864700400759811456244128889754306386459557887432298148719591734971030611474690885904247396313959818854940592795291449937598794070517570167551607950979266237997797283563645242105244737520881371410960067902176629829514256225641238164014573644333472284672", "577756298062641319815321284633539861082132919998722885657507672188606317696301924134068233518707877841769252356274834883678320922291785288952259324960085933885572481476441044041666245632947630667669900623389069655523344952222114179660086674251300523449279256078271770682664276058349275922600493471476178420154378012048571333436567365397136152469165480980158369042006016"}; int main() { int n; while(1) { scanf("%d", &n); if(n == 0) break; else printf("%s\n", ans[n - 1]); } } ``` 计算代码: ``` #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #define For(i, a, b) for(register int i = a; i <= b; ++i) #define LL long long using namespace std; const int maxn = 50 + 5; int N = 50; namespace BIGINT { const int POW = 100000000, ML = 130, st = 8; char s[ML]; int len, tmp, tmp2; const int TP[] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; #define For(i, a, b) for(register int i = a; i <= b; ++i) #define Down(i, a, b) for(register int i = a; i >= b; --i) struct INT1024 { int a[ML], l; INT1024() {} void clear() {memset(a, 0, sizeof(int) * (l + 1)), l = 0;} INT1024(int x) { clear(); while(x) a[l++] = x % POW, x /= POW; } void init(int x) { clear(); while(x) a[l++] = x % POW, x /= POW; } void put() { printf("%d", a[l - 1]); Down(i, l - 2, 0) printf("%04d", a[i]); } void read() { scanf("%s", s), len = strlen(s); l = tmp2 = tmp = 0; Down(i, len - 1, 0) { tmp = tmp + (s[i] - '0') * TP[tmp2++]; if(tmp2 == st) a[l++] = tmp, tmp2 = tmp = 0; } if(tmp) a[l++] = tmp; } } ; long long mid[ML << 1]; INT1024 operator + (INT1024 a, const INT1024 &b) { a.l = max(a.l, b.l); For(i, 0, a.l - 1) a.a[i] += b.a[i]; For(i, 0, a.l - 1) { a.a[i + 1] += a.a[i] / POW; a.a[i] %= POW; } while(a.a[a.l]) a.a[a.l + 1] += a.a[a.l] / POW, a.a[(a.l++)] %= POW; return a; } INT1024 operator + (INT1024 a, const int &b) { a.a[0] += b; For(i, 0, a.l - 1) { a.a[i + 1] += a.a[i] / POW; a.a[i] %= POW; } while(a.a[a.l]) a.a[a.l + 1] += a.a[a.l] / POW, a.a[(a.l++)] %= POW; return a; } void operator += (INT1024 & a, const int &b) { a.a[0] += b; For(i, 0, a.l - 1) { if(a.a[i] < POW) return ; a.a[i + 1] += a.a[i] / POW; a.a[i] %= POW; } while(a.a[a.l]) a.a[a.l + 1] += a.a[a.l] / POW, a.a[(a.l++)] %= POW; } INT1024 operator - (INT1024 a, const INT1024 &b) { a.l = max(a.l, b.l); For(i, 0, a.l - 1) a.a[i] -= b.a[i]; For(i, 0, a.l - 2) { if(a.a[i] < 0) a.a[i + 1] -= 1, a.a[i] += POW; } while(!a.a[a.l - 1]) --a.l; return a; } INT1024 operator - (INT1024 a, const int &b) { a.a[0] -= b; For(i, 0, a.l - 2) { if(a.a[i] < 0) a.a[i + 1] -= 1, a.a[i] += POW; else return a; } while(!a.a[a.l - 1]) --a.l; return a; } void operator -= (INT1024 & a, const int &b) { a.a[0] -= b; For(i, 0, a.l - 2) { if(a.a[i] < 0) a.a[i + 1] -= 1, a.a[i] += POW; else return ; } while(!a.a[a.l - 1]) --a.l; } long long tml; INT1024 operator / (INT1024 a, const int &b) { tml = 0; Down(i, a.l - 1, 0) { tml = tml * POW + a.a[i]; a.a[i] = tml / b, tml %= b; } while(!a.a[a.l - 1]) --a.l; return a; } void operator /= (INT1024 & a, const int &b) { tml = 0; Down(i, a.l - 1, 0) { tml = tml * POW + a.a[i]; a.a[i] = tml / b, tml %= b; } while(!a.a[a.l - 1]) --a.l; } INT1024 operator * (INT1024 a, const INT1024 &b) { int len = a.l + b.l; memset(mid, 0, sizeof(long long) * (len + 1)); For(i, 0, a.l - 1) For(j, 0, b.l - 1) mid[i + j] += 1ll * a.a[i] * b.a[j]; For(i, 0, len - 1) mid[i + 1] += mid[i] / POW, mid[i] %= POW; while(!mid[len - 1]) --len; a.l = len; For(i, 0, len - 1) a.a[i] = mid[i]; return a; } } using namespace BIGINT; INT1024 t, dp[maxn], two(2); INT1024 C(int a, const int & b) { t.init(1); For(i, 1, b) { t = t * INT1024(a); a -= 1; } For(i, 2, b) t /= i; return t; } INT1024 pow2(int x) { t.init(1); while(x--) t = t * two; return t; } int n = 50, mx; int main() { dp[1].init(1), mx = n * (n - 1) / 2; For(i, 1, n) dp[i] = pow2((i - 1) * i / 2); For(i, 2, n) { For(j, 1, i - 1) dp[i] = dp[i] - pow2((i - j) * (i - j - 1) / 2) * dp[j] * C(i - 1, j - 1); } while(1) { scanf("%d", &n); if(!n) break; dp[n].put(), putchar('\n'); } return 0; } ```
上一篇:
从Parasprite说起:排列与组合数
下一篇:
BZOJ4271:chemistry 化学
0
赞
385 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册