CF#259 Div1 A Little Pony and Expected Maximum
? 解题记录 ? ? Codeforces ? ? 期望概率 ?    2017-11-25 14:16:41    570    0    0

Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.

The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains mdots. Twilight Sparkle is sure that when the dice is tossed, each face appears with probability . Also she knows that each toss is independent from others. Help her to calculate the expected maximum number of dots she could get after tossing the dice n times.

Input

A single line contains two integers m and n (1 ≤ m, n ≤ 105).

Output

Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed 10  - 4.

Examples

input
6 1
output
3.500000000000
input
6 3
output
4.958333333333
input
2 2
output
1.750000000000
Note

Consider the third test example. If you've made two tosses:

  1. You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
  2. You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
  3. You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
  4. You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.

The probability of each outcome is 0.25, that is expectation equals to:

You can read about expectation using the following link: http://en.wikipedia.org/wiki/Expected_value

考虑到可以分开算最大值分别为1~n的情况来计算期望,而点数为i的话当前点数为最大值的情况有i ^ n - (i - 1) ^ n种,化简一下边计算边做除法,我们这里就可以用快速幂了。

#include<cstdio>
using namespace std;
double ans;
int n, faces;
template<typename T>
T fpow(T a, int b) {
	T ans = 1;
	while(b) {
		if(b & 1) ans *= a;
		a *= a, b >>= 1;
	}
	return ans;
}
int main() {
	scanf("%d%d", &faces, &n);
	for(register int i = 1; i <= faces; ++i) 
		ans += (double)((fpow((double)i / faces, n) - fpow((double)(i - 1) / faces, n)) * i);
	printf("%.12lf", ans);
	return 0;
}
 

 

上一篇: 洛谷P2149 [SDOI2009]Elaxia的路线

下一篇: CF GYM100548 Problem G. The Problem to Slow Down You

570 人读过
立即登录, 发表评论.
没有帐号? 立即注册
0 条评论
文档导航