题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数加上x
2.将某区间每一个数乘上x
3.求出某区间每一个数的和
输入输出格式
输入格式:
第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k
操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k
操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果
输出格式:
输出包含若干行整数,即为所有操作3的结果。
输入输出样例
输入样例#1:
5 5 38 1 5 4 2 3 2 1 4 1 3 2 5 1 2 4 2 2 3 5 5 3 1 4
输出样例#1:
17 2
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强^_^)
样例说明:
故输出应为17、2(40 mod 38=2)
今天先用cnt分配标号写线段树做了这道题,T成狗,一脸懵逼。于是换成rt*2,rt*2+1又T成狗,70分
好,那么究竟怎么才能不T?很气啊,然后删了几个取模居然80分了。于是豁然开朗,只在最后取模,AC。
这道题告诉我们取模不要乱取的重要性。
#include<cstdio>
using namespace std;
const int maxn = 100005;
int p;
int data[maxn];
#define gadd(a, b) ((((a)%p) + ((b)%p))%p)
#define gtimes(a, b) ((((a)%p) * ((b)%p))%p)
inline int read() {
int ret = 0, f = 1;
char c = getchar();
while(c > '9' || c < '0') {
if(c == '-') f = -1;
c = getchar();
}
while(c <= '9' && c >= '0') ret = ret * 10 + c - '0', c = getchar();
return ret * f;
}
namespace Segtree{
struct node {
long long lazy[2], sum;
int l, r;
}tree[maxn << 2];
void push_up(int rt) {
tree[rt].sum = (tree[rt << 1].sum + tree[rt << 1 | 1].sum) % p;
}
void push_down(int rt) {
if(tree[rt].lazy[0] == 0 && tree[rt].lazy[1] == 1) return;
(tree[rt << 1].lazy[0] *= tree[rt].lazy[1]) %= p;
(tree[rt << 1].lazy[0] += tree[rt].lazy[0]) %= p;
(tree[rt << 1 | 1].lazy[0] *= tree[rt].lazy[1]) %= p;
(tree[rt << 1 | 1].lazy[0] += tree[rt].lazy[0]) %= p;
(tree[rt << 1].lazy[1] *= tree[rt].lazy[1]) %= p;
(tree[rt << 1 | 1].lazy[1] *= tree[rt].lazy[1]) %= p;
(tree[rt << 1].sum *= tree[rt].lazy[1]) %= p;
(tree[rt << 1].sum += gtimes((tree[rt << 1].r - tree[rt << 1].l + 1), tree[rt].lazy[0])) %= p;
(tree[rt << 1 | 1].sum *= tree[rt].lazy[1]) %= p;
(tree[rt << 1 | 1].sum += gtimes((tree[rt << 1 | 1].r - tree[rt << 1 | 1].l + 1), tree[rt].lazy[0])) %= p;
tree[rt].lazy[0] = 0;
tree[rt].lazy[1] = 1;
}
void build(int rt, int l, int r) {
tree[rt].l = l, tree[rt].r = r;
tree[rt].lazy[1] = 1;
if(l == r) {
tree[rt].sum = data[l] % p;
return;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
push_up(rt);
}
long long query(int rt, int l, int r) {
int tl = tree[rt].l, tr = tree[rt].r;
if(l == tl && r == tr) return tree[rt].sum;
push_down(rt);
int mid = (tl + tr) >> 1;
if(r <= mid) return query(rt << 1, l, r) % p;
else if(l > mid) return query(rt << 1 | 1, l, r) % p;
else return gadd(query(rt << 1, l, mid), query(rt << 1 | 1, mid + 1, r));
}
void add(int rt, int l, int r, int dt) {
int tl = tree[rt].l, tr = tree[rt].r;
if(l == tl && r == tr) {
(tree[rt].sum += (tr - tl + 1) * (dt % p)) %= p;
(tree[rt].lazy[0] += dt) %= p;
return;
}
push_down(rt);
int mid = (tl + tr) >> 1;
if(r <= mid) add(rt << 1, l, r, dt);
else if(l > mid) add(rt << 1 | 1, l, r, dt);
else add(rt << 1, l, mid, dt), add(rt << 1 | 1, mid + 1, r, dt) ;
push_up(rt);
}
void times(int rt, int l, int r, int dt) {
int tl = tree[rt].l, tr = tree[rt].r;
if(l == tl && r == tr) {
(tree[rt].sum *= dt) %= p;
(tree[rt].lazy[1] *= dt) %= p;
(tree[rt].lazy[0] *= dt) %= p;
return;
}
push_down(rt);
int mid = (tl + tr) >> 1;
if(r <= mid) times(rt << 1, l, r, dt);
else if(l > mid) times(rt << 1 | 1, l, r, dt);
else times(rt << 1, l, mid, dt), times(rt << 1 | 1, mid + 1, r, dt) ;
push_up(rt);
}
}
int main() {
int n, m;
scanf("%d%d%d", &n, &m, &p);
for(register int i = 1; i <= n; ++i) data[i] = read();
Segtree::tree[0].lazy[1] = 1;
Segtree::build(1, 1, n);
int opt, a, b, c;
for(register int i = 1; i <= m; ++i) {
opt = read();
if(opt != 3) {
a = read(), b = read(), c = read();
if(opt == 2) Segtree::add(1, a, b, c);
else Segtree::times(1, a, b, c);
}else {
a = read(), b = read();
printf("%d\n", Segtree::query(1, a, b));
}
}
return 0;
}
rockdu
没有帐号? 立即注册