lee-romantic 's Blog
Everything is OK!
Toggle navigation
lee-romantic 's Blog
主页
About Me
归档
标签
REID信息检索的基本指标
2018-11-01 21:42:46
397
0
0
lee-romantic
#1、mAP的计算 ReID 终归还是排序问题,Rank 是排序命中率核心指标。Rank1 是首位命中率,就是排在第一位的图有没有命中他本人,Rank5 是 1-5 张图有没有至少一张命中他本人。  这里放了两组图,图片 1 和图片 2 是检索图,第一组图在底库中有 5 张图,下面有 5 个数字,我们假设它的检索位置,排在第 1 位、第 3 位、第 4 位、第 8 位,第 20 位,第二张图第 1 位、第 3 位、第 5 位。 它的 mAP 是怎么算的?对于第一张图平均精度有一个公式在下面,就是 0.63 这个位置。第一张是 1 除以 1,第二张是除以排序实际位置,2 除以 3,第三个位置是 3 除以 4,第四个是 4 除以 8,第五张图是 5 除以 20,然后把它们的值求平均,再总除以总的图片量,最后得出的 mAP 值大概是 0.63。 同样的算法,算出图片 2 的精度是 0.756。最后把所有图片的 mAP 求一个平均值,最后得到的 mAP 大概是 69.45。从这个公式可以看到,这个检索图在底库中所有的图片都会去计算 mAP,所以最好的情况是这个人在底库中所有的图片都排在前面,没有任何其他人的照片插到他前面来,就相当于同一个人所有的照片距离都是最近的,这种情况最好,这种要求是非常高的,所以 mAP 是比较能够综合体现这个模型真实水平的指标。 参考: https://www.cnblogs.com/gmhappy/p/11864020.html 2、rankn和mAP  #3、P、R等 ##1、rank-n 搜索结果中最靠前(置信度最高)的n张图有正确结果的概率。 例如: lable为m1,在100个样本中搜索。 如果识别结果是m1、m2、m3、m4、m5……,则此时rank-1的正确率为100%;rank-2的正确率也为100%;rank-5的正确率也为100%;如果识别结果是m2、m1、m3、m4、m5……,则此时rank-1的正确率为0%;rank-2的正确率为100%;rank-5的正确率也为100%;如果识别结果是m2、m3、m4、m5、m1……,则此时rank-1的正确率为0%;rank-2的正确率为0%;rank-5的正确率为100% 当待识别的人脸集合有很多时,则采取取平均值的做法。 ##2、Precision & Recall 一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。 Precision:准确率 output为1中ground truth也为1的 占ground truth为1的概率 Recall:召回率 output为1中ground truth也为1的 占output为1的概率 正确率 = 提取出的正确信息条数 / 提取出的信息条数 召回率 = 提取出的正确信息条数 / 样本中的信息条数 准确率和召回率都是针对同一类别来说的,并且只有当检索到当前类别时才进行计算,比如在person re-id中,一个人的label为m1,在测试集中包含3张此人的图像,检索出来的图像按照得分从高到低顺序为m1、m2、m1、m3、m4、m1….,此时 第一次检索到m1,提取出的正确信息条数=1,提取出的信息条数=1,样本中的信息条数=3,正确率=1/1=100%,召回率=1/3=33.33%; 第二次检索到m1,提取出的正确信息条数=2,提取出的信息条数=3,样本中的信息条数=3,正确率=2/3=66.66%,召回率=2/3=66.66%; 第三次检索到m1,提取出的正确信息条数=3,提取出的信息条数=6,样本中的信息条数=3,正确率=3/6=50%,召回率=3/3=100%; 平均正确率AP=(100%+66.66%+50%)/3=72.22% 而当需要检索的不止一个人时,此时正确率则取所有人的平均mAP。 ##3、F-score recall和precision的调和平均数 2 * P * R / (P + R) 从上面准确率和召回率之间的关系可以看出,一般情况下,Precision高,Recall就低,Recall高,Precision就低。所以在实际中常常需要根据具体情况做出取舍,例如一般的搜索情况,在保证召回率的条件下,尽量提升精确率。 很多时候我们需要综合权衡这2个指标,这就引出了一个新的指标F-score。这是综合考虑Precision和Recall的调和值。 当β=1时,称为F1-score,这时,精确率和召回率都很重要,权重相同。当有些情况下,我们认为精确率更重要些,那就调整β的值小于1,如果我们认为召回率更重要些,那就调整β的值大于1。 比如在上面的例子中,在第三次检索到m1时的争取率为50%,召回率为100%,则F1-score=(2*0.5*1)/(0.5+1)=66.66%,而F0.5-score=(1.25*0.5*1)/(0.25*0.5+1)=55.56% https://blog.csdn.net/qq_40452344/article/details/103484072
上一篇:
图像处理编程题--conflict
下一篇:
pickle模块的简单使用
0
赞
397 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册