wuvin
Always take risks!
Toggle navigation
wuvin
主页
实验室的搬砖生活
机器学习
公开的学术内容
公开的其他内容
About Me
归档
标签
友情链接
ZYQN
ihopenot
enigma_aw
hzwer
杨宗翰
3D 生成调研
2022-01-13 16:41:19
207
0
0
wuvin
# Voxel ### Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ![title](https://leanote.com/api/file/getImage?fileId=61e0e9d4ab644142b4616543) ### Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs ![title](https://leanote.com/api/file/getImage?fileId=61e0f22cab644142b4616580) ![title](https://leanote.com/api/file/getImage?fileId=61e0f244ab644142b4616581) ### Visual Object Networks: Image Generation with Disentangled 3D Representation ![title](https://leanote.com/api/file/getImage?fileId=61e12b60ab644142b46166f4) ### Improved Adversarial Systems for 3D Object Generation and Reconstruction ![title](https://leanote.com/api/file/getImage?fileId=61e12c7fab644142b46166fe) # Point Cloud ### Learning Representations and Generative Models for 3D Point Clouds ![title](https://leanote.com/api/file/getImage?fileId=61e0f1d0ab644142b461657a) ![title](https://leanote.com/api/file/getImage?fileId=61e0f1fcab644142b461657e) ### FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation ![title](https://leanote.com/api/file/getImage?fileId=61e1089aab644142b46165d9) ![title](https://leanote.com/api/file/getImage?fileId=61e108bdab644142b46165db) ### PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows ![title](https://leanote.com/api/file/getImage?fileId=61e12900ab644142b46166dd) ![title](https://leanote.com/api/file/getImage?fileId=61e1291aab644142b46166de) ### Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks ![title](https://leanote.com/api/file/getImage?fileId=61e12af4ab644142b46166f1) ![title](https://leanote.com/api/file/getImage?fileId=61e12b02ab644142b46166f2) ### Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction ![title](https://leanote.com/api/file/getImage?fileId=61e12c33ab644142b46166fb) ![title](https://leanote.com/api/file/getImage?fileId=61e12c40ab644142b46166fc) # Mesh ### Neural 3D Mesh Renderer ![title](https://leanote.com/api/file/getImage?fileId=61e0f5a4ab644142b461658c) ![title](https://leanote.com/api/file/getImage?fileId=61e10522ab644142b46165d0) ### SurfNet: Generating 3D shape surfaces using deep residual networks ![title](https://leanote.com/api/file/getImage?fileId=61e12944ab644142b46166e0) ![title](https://leanote.com/api/file/getImage?fileId=61e12971ab644142b46166e1) ![title](https://leanote.com/api/file/getImage?fileId=61e1297fab644142b46166e2) ### BSP-Net: Generating Compact Meshes via Binary Space Partitioning ![title](https://leanote.com/api/file/getImage?fileId=61e12d4aab644142b4616706) ![title](https://leanote.com/api/file/getImage?fileId=61e12d58ab644142b4616707) ![title](https://leanote.com/api/file/getImage?fileId=61e12d70ab644142b4616709) ![title](https://leanote.com/api/file/getImage?fileId=61e12d9dab644142b461670a) ### Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation ![title](https://leanote.com/api/file/getImage?fileId=61e12dc4ab644142b461670b) ![title](https://leanote.com/api/file/getImage?fileId=61e12e0cab644142b461670d) ### PolyGen: An Autoregressive Generative Model of 3D Meshes ![title](https://leanote.com/api/file/getImage?fileId=61e12ee1ab644142b4616710) ![title](https://leanote.com/api/file/getImage?fileId=61e12ef3ab644142b4616711) # Other Important Papers ### Local Implicit Grid Representations for 3D Scenes (CVPR 2020) ![title](https://leanote.com/api/file/getImage?fileId=61e13036ab644142b4616726) ![title](https://leanote.com/api/file/getImage?fileId=61e13203ab644142b461672a) ![title](https://leanote.com/api/file/getImage?fileId=61e13239ab644142b461672d) ![title](https://leanote.com/api/file/getImage?fileId=61e13253ab644142b4616730) ![title](https://leanote.com/api/file/getImage?fileId=61e1326bab644142b4616732) * 这个相当于是 Grid + Occupancy Network。 所以是无法渲染出颜色,而且训练需要3D模型数据的。做的任务也只是 Memories 一个3D场景,本质上是 Nerf的竞争对手。 ### Local Deep Implicit Functions for 3D Shape ![title](https://leanote.com/api/file/getImage?fileId=61e133b5ab644142b461673c) ![title](https://leanote.com/api/file/getImage?fileId=61e133c6ab644142b461673d) * 这个是用大量正态分布做的,不构成竞争。 # Conclusion * 除了苹果那篇室内场景生成【Unconstrained Scene Generation with Locally Conditioned Radiance Fields (ICCV 2021), 在之前的基于Nerf的生成模型的调研里】以外,目前为止没有任何一个工作做到了大型3D场景生成。 * 已有的基于 Voxel, Point Cloud, Mesh 的方法都没颜色。
上一篇:
Point-NeRF: Point-based Neural Radiance Fields
下一篇:
GRAF 后续
0
赞
207 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册