wuvin
Always take risks!
Toggle navigation
wuvin
主页
实验室的搬砖生活
机器学习
公开的学术内容
公开的其他内容
About Me
归档
标签
友情链接
ZYQN
ihopenot
enigma_aw
hzwer
杨宗翰
CycleGAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
2019-09-18 10:19:32
682
0
0
wuvin
啊~开始看听说过很多遍的CycleGAN的paper了!久仰大名不如登门造访 # 简介 ## 作用 * 建立两个图片分布(A,B)之间的**一一映射**。具体来说是Image-to-Image translation。(类似的,SeqGAN做机器翻译,用强化学习解决了连续性问题,蒙特卡罗搜索+LSTM解决部分序列评分问题) ![title](https://leanote.com/api/file/getImage?fileId=5d81990eab64417b54005468) ## 框架 * 有两个mapping function和 对应的discriminators。以及训练时的重要假设是$F(G(x)) \approx x$. ![title](https://leanote.com/api/file/getImage?fileId=5d819cf5ab64417b5400554f) * Adversarial Loss 正常定义为crossentropy (实际训练时替换为了MSE,但听说MSE会让生成的图像更加模糊[[1]](http://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html)): $LGAN(G, DY , X, Y ) = E_{y\sim pdata(y)}[\log D_Y(y)] + E_{x\sim pdata(x)}[log(1 − D_Y(G(x))]$ * Cycle Consistency Loss 定义为 $L_{cyc}(G, F) = E_{x\sim pdata(x)}[||F(G(x)) − x||_1]+ E_{y\sim pdata(y)}[||G(F(y)) − y||_1]$. * 总体Loss 自然就是:$L(G, F, D_X, D_Y ) = L_{GAN}(G, D_Y , X, Y ) + L_{GAN}(F, D_X, Y, X)+ \lambda L_{cyc}(G, F)$ * generative networks使用的是 Perceptual losses for real-time style transfer and super-resolution文中的网络。 ![Per](https://leanote.com/api/file/getImage?fileId=5d81a5b6ab644179560056b2) * discriminator networks使用70 × 70 PatchGANs. ## 效果 ![title](https://leanote.com/api/file/getImage?fileId=5d81a3dbab64417956005658) * 从效果看起来,还是简单的纹理翻译,看起来并没有学到如何识别一匹马,马皮的纹理特征还是识别到了的。这导致了合成斑马身上的条纹是弯的(真马是背到肚子直着的)。(这可能与discriminators靠纹理做识别有关)。 * 整体来讲,只能叫做简单的一一映射的风格迁移 ## 代码 * 以下为https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix中的重要部分 * Generator 选择很多,这里只展示resnet的代码 ```python class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out ``` * Discriminator的选择也很多,这里展示与论文相同的PatchGAN。 * 一个问题是为什么用的不是ReLU,而是LeakyReLU,留个坑,有空去看看原文。 ```python class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) ``` * 然后大模型本身 ```python class CycleGANModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. A (source domain), B (target domain). Generators: G_A: A -> B; G_B: B -> A. Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) Dropout is not used in the original CycleGAN paper. """ parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout if is_train: parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') return parser def __init__(self, opt): """Initialize the CycleGAN class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> visual_names_A = ['real_A', 'fake_B', 'rec_A'] visual_names_B = ['real_B', 'fake_A', 'rec_B'] if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B) visual_names_A.append('idt_B') visual_names_B.append('idt_A') self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>. if self.isTrain: self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] else: # during test time, only load Gs self.model_names = ['G_A', 'G_B'] # define networks (both Generators and discriminators) # The naming is different from those used in the paper. # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X) self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define discriminators self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels assert(opt.input_nc == opt.output_nc) self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. self.criterionCycle = torch.nn.L1Loss() self.criterionIdt = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap domain A and domain B. """ AtoB = self.opt.direction == 'AtoB' self.real_A = input['A' if AtoB else 'B'].to(self.device) self.real_B = input['B' if AtoB else 'A'].to(self.device) self.image_paths = input['A_paths' if AtoB else 'B_paths'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG_A(self.real_A) # G_A(A) self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) self.fake_A = self.netG_B(self.real_B) # G_B(B) self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B)) def backward_D_basic(self, netD, real, fake): """Calculate GAN loss for the discriminator Parameters: netD (network) -- the discriminator D real (tensor array) -- real images fake (tensor array) -- images generated by a generator Return the discriminator loss. We also call loss_D.backward() to calculate the gradients. """ # Real pred_real = netD(real) loss_D_real = self.criterionGAN(pred_real, True) # Fake pred_fake = netD(fake.detach()) loss_D_fake = self.criterionGAN(pred_fake, False) # Combined loss and calculate gradients loss_D = (loss_D_real + loss_D_fake) * 0.5 loss_D.backward() return loss_D def backward_D_A(self): """Calculate GAN loss for discriminator D_A""" fake_B = self.fake_B_pool.query(self.fake_B) self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) def backward_D_B(self): """Calculate GAN loss for discriminator D_B""" fake_A = self.fake_A_pool.query(self.fake_A) self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) def backward_G(self): """Calculate the loss for generators G_A and G_B""" lambda_idt = self.opt.lambda_identity lambda_A = self.opt.lambda_A lambda_B = self.opt.lambda_B # Identity loss if lambda_idt > 0: # G_A should be identity if real_B is fed: ||G_A(B) - B|| self.idt_A = self.netG_A(self.real_B) self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt # G_B should be identity if real_A is fed: ||G_B(A) - A|| self.idt_B = self.netG_B(self.real_A) self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt else: self.loss_idt_A = 0 self.loss_idt_B = 0 # GAN loss D_A(G_A(A)) self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) # GAN loss D_B(G_B(B)) self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) # Forward cycle loss || G_B(G_A(A)) - A|| self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A # Backward cycle loss || G_A(G_B(B)) - B|| self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B # combined loss and calculate gradients self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B self.loss_G.backward() def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # forward self.forward() # compute fake images and reconstruction images. # G_A and G_B self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero self.backward_G() # calculate gradients for G_A and G_B self.optimizer_G.step() # update G_A and G_B's weights # D_A and D_B self.set_requires_grad([self.netD_A, self.netD_B], True) self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero self.backward_D_A() # calculate gradients for D_A self.backward_D_B() # calculate graidents for D_B self.optimizer_D.step() # update D_A and D_B's weights class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss ```
上一篇:
Ladder Net及相关半监督方法
下一篇:
ResNet及其Pytorch实现
0
赞
682 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册