Mixiu
造化可能偏有意,哈哈哈哈啊哈
Toggle navigation
Mixiu
主页
About Me
归档
标签
Paper: Furusawa Theta lift from SO(2n+1) to MP(2n)
2019-08-13 16:04:33
66
0
0
mixiu
## Main theorem ![](https://leanote.com/api/file/getImage?fileId=5d7220d0ab64412991006582) The condition that $\pi$ has a Bessel model of that type is equvalent to $L(1/2,\pi)\neq 0$. <font color="#dd0000"> Question: 1. Rallis inner product formula ? </font><br /> 2. ![](https://leanote.com/api/file/getImage?fileId=5d7220d0ab64412991006586) **The principle** A period $\mathcal P_1$ of tne theta lift $\Theta(\pi)$ of a cuspidal representation $\pi$ is related to a corresponding period $\mathcal P_2$ on $\pi$ ## $SO(2n+1)$to $MP(2n)$ 1. Global theorem: The Whittaker period of $\Theta(\pi)$ is related to the Bessel period of $\pi$. ![](https://leanote.com/api/file/getImage?fileId=5d7220d0ab64412991006585) 2. Local theorem The local analog is to calculate the whittaker model for $\Theta(\pi)$. Lemma: $(\omega_{V,W,\psi})_{N_W,\psi_a}\cong ?$ Bessel model For proving this, using the model $S(V\otimes Y^{\vee})$, where the unipotent radical of $Mp$ acting by characters. Know case, for $SO(2,1)$ to $MP(2)$ $$(\omega_{V,W,\psi})_{N_V,\psi_a}\cong ind_{Q(V_a)}^{O(V)} 1$$ <font color="#dd0000"> Question: Also have three cases $n<m. n=m, n>m $ Wee teck know ## $MP(2n)$ to $SO(2n+1)$</font><br /> 1. Global theorem The Whittaker period of $\Theta(\sigma)$ is related to the Whittaker period of $\sigma$. ![](https://leanote.com/api/file/getImage?fileId=5d7220d0ab64412991006583) ![](https://leanote.com/api/file/getImage?fileId=5d7220d0ab64412991006584) 2. Local theorem: When $n<m$, $$(\omega_{V,W,\psi_{\lambda}})_{N_V,\psi}=0$$ When $m=n$ $$(\omega_{V,W,\psi})_{N_V,\psi_{\lambda}}\cong ind_{N_W}^{Mp(W)} \psi_{\lambda}$$ For any $\lambda$ When $n>m$ $$(\omega_{V,W,\psi})_{N_W,\psi_{\lambda}}\cong Fourier-jacobi \,\,model ??$$ Remarks: (1): For proving this, use the model $S(X^{\vee}\otimes W+e\otimes Y^{\vee})$, where the unipotent radical of $SO(V)$ acting by characters. 3. Corollary. When $m=n$ For $\sigma \in Irr(Mp(W))$, $$ Hom_{\mathbb C}(ind_{N_W}^{Mp(W)}\psi_{\lambda}, 1)\cong Hom_{N_{V}}(\omega_{V,W,\psi},\psi_{\lambda}) $$ implies $$ Hom_{Mp(W)}(ind_{N_W}^{Mp(W)}\psi_{\lambda}, \sigma)\cong Hom_{N_{V}}(\Theta(\sigma),\psi_{\lambda}) $$ and $$ Hom_{Mp(W)}(ind_{N_W}^{Mp(W)}\psi_{\lambda}, \sigma)\cong Hom_{Mp(W)}(\sigma^{\vee}, Ind_{N_W}^{Mp(W)}\psi_{\lambda}^{-1})\cong Hom_{N_W}(\sigma^{\vee},\psi_{\lambda}^{-1})\cong Hom_{N_W}(\sigma,\psi_{\lambda}^{-1}) $$ <font color="#dd0000"> Inverse problem, does not fit the theorem in Gan&Savin</font><br /> so we have $$ Hom_{N_{V}}(\Theta(\sigma),\psi_{\lambda})\cong Hom_{N_W}(\sigma,\psi_{\lambda}^{-1}) $$ (1): If $\sigma$ is $\psi_{\lambda}$ generic, then $\Theta(\sigma)$ is $\psi_{\lambda}$ generic. So if $\Theta(\sigma)=\theta(\sigma)$, then $\theta_{\sigma}$ is generic. In particular, if $\sigma$ is temepered, then $\theta_{\sigma}$ is generic. (2): If $\pi\in Irr(SO(V^{+})$ is $\psi_{\lambda}$ generic, and if $\theta(\pi)\neq 0$, then $\sigma=\theta(\pi)=\Theta(\pi)$ is $\psi_{\lambda}$ generic. Prove: Let $\sigma=\theta(\pi)\neq 0$, then $\Theta(\sigma)$ is $\psi_{\lambda}$ generic as $\pi=\theta(\sigma)$ is generic, so $\sigma$ is $\psi_{\lambda}$ generic since $$ Hom_{N_{V}}(\Theta(\sigma),\psi_{\lambda})\cong Hom_{N_W}(\sigma,\psi_{\lambda}) $$ $\Theta(\sigma)=\theta(\sigma)$ follows from standard module conjecture and for $\sigma$ tempered, $\Theta(\sigma)=\theta(\sigma)$. Say $$\sigma=\tau_1|det|^{s_1}\times \cdots \times \tau_{r}|det|^{s_r}\times \sigma_{0} \quad s_1>s_2\cdots, s_r>0$$ then $$\theta(\sigma)= \tau_1|det|^{s_1}\times \cdots \times \tau_{r}|det|^{s_r}\times \theta(\sigma_{0})$$, Since $\pi=\theta(\tau)$ is generic, by standard module conjecture, $I(\tau_1|det|^{s_1}\times \cdots \times \tau_{r}|det|^{s_r}\times \theta(\sigma_{0}))$ is irreducible and $$\Theta(\sigma)=\theta(\sigma)=I(\tau_1|det|^{s_1}\times \cdots \times \tau_{r}|det|^{s_r}\times \theta(\sigma_{0}))$$ Similarly, $\Theta(\pi)=\theta(\pi)$ Remark: (1) In (1), it is not true that $\theta(\sigma)$ is $\psi_{\lambda}$ generic, examples: $n=1, \sigma=\omega_{\psi}^{e}$ be the even Weil representation of $Mp(W)$, then $\theta(\sigma)$ is the trivial representation of $SO(V^{+})$, which is not generic. (2): As there is only one orbit for generic characters of $SO(V)$, we have if If $\pi\in Irr(SO(V^{+})$ is $\psi$ generic, then $\sigma=\theta(\pi)=\Theta(\pi)$ is $\psi_{\lambda}$ generic for any $\lambda\in F^{*}$. ## Back to global Let $\Pi$ be an automorphic cuspidal generic representation of $SO(2n+1)$, then (1) $\Theta_{V,W_{2k},\psi}(\Pi)=0$ for $k<n$. This is by local ? (2) If $\Sigma= \Theta_{V,W_{2n},\psi}(\Pi)\neq 0$, then $\Sigma$ is $\psi_{\lambda}$ generic for any $\lambda\in F^{*}$. This is because $\Theta(\Sigma)=\Pi$ is generic for any $\psi_{\lambda}$. So $\Pi$ has the Bessel model of the type $(R_{\lambda},1,\psi)$ for any $\lambda$, in particular it has the Bessel model of type $(R_{1},1,\psi)$, which is equivalent to $L(1/2,\Pi)\neq 0$. Converse, if $L(1/2,\Pi)\neq 0$, then $\Pi$ has the Bessel model of type $(R_{1},1,\psi)$, hence $\Sigma$ is $\psi_{1}$ generic, so $\Sigma\neq 0$. Corollary: Let $\Pi$ be automorphic cuspidal generic representation of $SO(2n+1)$, If $\Pi$ has a Bessel model of special type $(R_{\lambda},1,\psi)$ for some $\lambda \in F^{*}$, then $\Pi$ has the Bessel model of special type $(R_{\lambda},1,\psi)$ for any $\lambda$ Remark 1. Because we do not know the back and forth of a automorphic representation $\pi$ is itself, we only know that this is not orthogonal to $\pi$, so the above assumption is not enough. See the oringanal paper for the assupmtions. 2. The paper define the global theta as $$ \theta_{\psi,V,W}: \omega_{\psi,V,W}\otimes \pi\longrightarrow \Theta_{\psi,V,W}(\pi) $$ So the $\Theta_{\psi,V,W}(\pi)=\Theta_{\psi,V,W}(\pi^{\vee})$ in our setting, so he will have some $\psi^{-1}$ appear.
上一篇:
Paper: On Euler product and the classification of automorphisc forms I&II
下一篇:
睡眠
0
赞
66 人读过
新浪微博
微信
腾讯微博
QQ空间
人人网
提交评论
立即登录
, 发表评论.
没有帐号?
立即注册
0
条评论
More...
文档导航
没有帐号? 立即注册